Elmore - 2020

AFTER

30

20

50 60

0 30 40

8

0

Case Study: Paired trial – Mudgee, NSW

Cost of Multi-species crop \$183 /ha (6 Seed types and fertiliser)

lerati

Cost of barley crop - \$140 /ha (1 Seed type and fertiliser)

Paired trial: Weight Gain/Profit

228 Merino lambs – 57 days

```
Weight gain per day – 149 grams
```

Weight gain -57 days – 8.5 kg Lamb price/kg dressed - \$7

4.75 kg x \$7 = \$33.25 / lamb

Gross /ha = \$1263.35 Minus cost of sowing crop- \$140/ha

Profit/ha \$1123.50

228 Merino lambs – 57 days

```
Weight gain per day – 300 grams
```

Weight gain -57 days- 17 kg Lamb price/kg dressed \$7

8.5 kg x \$7 = \$59.50/lamb

Gross /ha = \$2261 Minus cost of sowing crop \$183/ha

Profit/ha \$2078

Change in Soil Nutrients

Cover Crop Plant	C:N	Focus				
Ideal microbial diet	24:1	Soil repair				
Cereal rye*	80:1	High biomass				
Annual vetch	11:1	Excellent stock feed; fixes large amount of N releases soil phosphorus, beneficial insects (flowers)				
Daikon (tillage raddish)*	19:1	Biological subsoil aeration				
Clover	21:1					
Forage brassica*	12:1	High protein, very digestible, helps control weeds				
Annual ryegrass	20:1					
- *helps chemically control weed	s, shading	& competition				

Single species crop (A)	Multi-species crop (B)
 Carbon – 15% Total Nitrogen -21% Phosphorus (Colwell)+ 62% Calcium – 3% Magnesium – 8% 	 Carbon + 21% +36% swing Iotal Nitrogen +16% Phosphorus (Colwell)+ 125% Calcium +13% Magnesium + 3%

Evaluation of investment

With the inclusion of soil carbon, the gross margin (p.a.) resulting from a multi-species cover crop is 3 times the control (single species cereal) and an even greater margin over tired minimal species pastures.

This approach (Trial B) is the fastest means of building soil carbon in an extremely profitable production model.

COVER CROP GROSS MARGIN CALCU				
Developed by Regenerative Autralian Farmers Pty Ltd	d, 2021			
PARAMETERS	TRIAL A (control)	Trial B (new1)		
Area (ha)	6	6		
Rainfall	260	260		
Paddock name (or ID)	Barley	Multi-species		
Photo point (take 2 weekly)				
Brix reading (sugar levels)				
Penetrometer (depth to achieve 300psi)	Attached	Attached		
VSA (refer Shepherd's book)				
A. Cover Crop details (per ha)	expand for	or detail		
sub-total				
B. Stock Production details	expand for detail			
sub-total				
C. Commercial value (per ha)				
Est. live weight value at start of period (\$/kg)	93	119		
Live weight value at end of period (\$/kg)	123	177		
Dressed price (\$/kg)	7	7		
Additional Revenue (\$/head)	29.4	58.1		
Gross Revenue (\$/ha)	1117.2	2207.8		
Estab. Costs (\$/ha)	262.5	305.5		
sub-total				
Gross Margin (\$/ha)	\$ 854.70	\$ 1,902.30		
With Soil Carbon value (2021 @\$30/tCO2e)	\$0	\$576.00		
Total	\$ 854.70	\$ 2,478.30		

Part 2 – Carbon Farming

Carbon Farming

- Soil Basics (physical, chemical, biological)
- Soil Testing (strategy, sampling, testing, interpretation)
- Five Principles of Soil Health
- Carbon Farming & Credit Creation
- What market? Am I eligible? What is involved?
- Case studies & the business case for soil carbon

Case Study: Know your starting point (soil carbon baselining)

What is my soil carbon level?

How do I find out?

What is possible?

Can I get paid for soil carbon?

What part of my farm?

Job No:	F4748							
No of Samples:	2	1		Sample 1	Sample 2			
Date Supplied:	14th November 2016	1	Sample ID:	CEA01_Comp03_UL	CEA02_Comp03_UL	Heavy Soil	Medium	Light So
Supplied by:	Eco2Sys Australia Pty Ltd	1	Crop:	N/G	N/G		30#	-
		1	Cleants	D Balfald	D Relifield		e.g Clay	/
			Cilenc	D. Bellielu	D. Beineid	e.g ciay	Loam	e.g Loam
Method	Nutrient	61	Units	F4748/5	F4748/11	Indicat	ve guideline	e only- refe
	Calcium	Ma		60	50	160	105	575
Morgan 1	Batassium	Mg	mg/kg	60	50	112	705	60
	Phorehous	p		13	0.7	15	12	10
Brav1	Thosphores			19	1.7	45 ^{tote S}	30 ^{note S}	2470108
Colwell	Phosphorus	р	ma/ka	11	10	80	50	45
Brav2				111	10	90 ^{rote S}	60 ^{note 8}	48note 8
	Nitrate Nitrogen			5.7	10	15	13	10
KCI	Ammonium Nitrogen	N	ma/ka	7.9	6.3	20	18	15
	Sulfur	S		22	6.5	10.0	8.0	8.0
	pH		units	5.46	5.39	6.5	6.5	6.3
1:5 Water	Conductivity		dS/m	0.047	0.039	0.200	0.150	0.120
Calculation	Estimated Organic Matter		% OM	1.7	1.6	>5.5	>4.5	>3.5
			cmol ⁺ /Ka	1.56	1.45	15.6	10.8	5.0
	Calcium	Ca	kg/ha	702	652	6250	4300	2000
			mg/kg	313	291	3125	2150	1000
			cmol+/Kg	0.70	0.55	2.4	1.7	1.2
	Magnesium	Mg	kg/ha	191	151	580	400	290
Ammonium Acetate +			mg/kg	85	67	290	200	145
Calculations	Potassium	K Na	cmol*/Kg	0.36	0.26	0.60	0.50	0.40
			kg/ha	313	224	470	380	300
			mg/kg	140	100	235	190	150
			cmol+/Kg	0.09	0.06	0.3	0.26	0.22
			kg/ha	49	29	138	120	101
			mg/kg	22	13	69	60	51
			cmol*/Kg	0.16	0.20	0.6	5	0.5
KCI	Aluminium	AI	kg/ha	32	39	108	90	81
			mg/kg	14	18	54	45	41
			cmol*/Kg	1.45	1.07	0.6	5	0.5
Acidity Titration	Hydrogen	H.	kg/ha	33	24	12	10	9
Calculation	Effective Cotton Fuchance Consult	(FCFC)	mg/kg	15	11	0	5	3
Calculation	Effective Cation Exchange Capacity	(ECEC)	cmol 7Kg	4.55	3.30	20	74	60
	Magnasium	va Ma		16.2	40.5	12	12	16
Barry Cathornellar	Potassium	K		83	7.2	3	4	5
Calculations	Sodium - ESP	Na	56	2.2	1.6	2	2	3
	Aluminium	AI		3.6	5.5			
	Hydrogen	H*		33.6	29.8	7	7	7
Calculation	Calcium / Magnesium Ratio		ratio	2.2	2.6	6.4	6.3	4.3
	Zinc	Zn		2.9	1.0	6.0	5.0	4.0
	Manganese	Mn		22	39	25	22	18
DTPA	iron	Fe	mg/kg	404	368	25	22	18
	Copper	Cu		0.9	0.8	2.4	2.0	1.6
0.0	Boron	В		0.20	0.27	2.0	1.7	1.4
CaCl ₂	Silicon	Si	mg/kg	38	46	50	45	40
1000 00 10 10 10	Total Carbon	C	56	0.95	0.94	>3.1	>2.6	>2.0
LECO IR Analyser	Total Nitrogen	N	%	0.09	0.08	>0.30	>0.25	>0.20
Calculation	Carbon/ Nitrogen Ratio		ratio	10.3	11.5	10-12	10-12	10-12
	Basic Texture			Loam	Loam			-

Soil carbon Report

2021 measurement showed SOC increases: 42% increase for 0-30cm & 35% for 30-100cm horizon

RESULTS OF SOIL ANALYSIS

12 samples supplied by Eco2Sys Australia Pty Ltd on the 14th October, 2016 - Lab Job No. F4748 Analysis requested by Deane Belfield.

		Gravimetric water content on the air dry soil	Air Dry Mass	Gravel Content	Gravel Content	Other Conten	Total Organic Carbo
		(g water/g oven-dry	I				
SAMPLE ID	Job No.	mass)	(g)	(g)	(%)	(%)	(% C)
				Stones and	Stones and	Soil and	
				Organic Matter	Organic Matter	Organic Mater	LECO CNS2 000
	Method			> 2mm	> 2mm	< 2mm	Analyser
CEA01_Comp01_UL	F4748/1	0.02	2839	1.2	0.0	100.0	1.08
CEA01_Comp01_DL	F4748/2	0.01	7623	1.5	0.0	100.0	0.22
CEA01_Comp02_UL	F4748/3	0.01	2852	22	0.8	99.2	1.15
CEA01_Comp02_DL	F4748/4	0.01	7503	1.4	0.0	100.0	0.26
CEA01_Comp03_UL	F4748/5	0.02	2826	2.8	0.1	99.9	0.93
CEA01_Comp03_DL	F4748/6	0.01	7476	16	0.2	99.8	0.21
CEA02_Comp01_UL	F4748/7	0.04	1990	238	12.0	88.0	1.14
CEA02_Comp01_DL	F4748/8	0.01	4345	1,014	23.3	76.7	0.28
CEA02_Comp02_UL	F4748/9	0.01	2003	179	9.0	91.0	0.93
CEA02_Comp02_DL	F4748/10	0.01	4696	1,377	29.3	70.7	0.24
CEA02_Comp03_UL	F4748/11	0.02	1957	68	3.5	96.5	0.85
CEA02_Comp03_DL	F4748/12	0.01	4806	854	17.8	82.2	0.20

Notes:

1. Results as dry weight DW - soils were dried at 40°C prior to sleving at 2mm then crushing.

2. Testing conducted according to the Carbon Farming Initiative Soil Sampling and Analysis Method and Gudelines June 2014

3. Methods from Rayment and Lyons, 2011. Soil Chemical Methods - Australasia.

4. Large aggregates were crushed with a mortar and pestle before drying

5. The <2mm fraction was sub-sampled by manual coning and quartering

6. Crushed soils were pretreated with acid prior to Carbon analysis on the LECO CNS2000 Analyser.

7. Carbon results are reported on an oven dried basis (105° C)

8. Previously based on the CSIRO National Soil Carbon Research Program 2011 methodologies and protocols

How does the Carbon Market work?

What is a carbon market?

Carbon markets turn emission reductions and removals into tradeable assets. These credits are generated from emission reduction projects (a solar farm or forest conservation easement, for example) or pollution allowances allocated by government cap-and-trade systems.

Australian carbon market - relates to the production and buying and selling of Australian carbon credit units (ACCUs) under the CFI. These units (or credits) are generated primarily from land restoration projects that re-establish native vegetation in the landscape and in turn remove carbon dioxide from the atmosphere, however

BUT there are other non-Government markets (private, VCS, and more)

Examples of achieving healthier soils, raising Soil Organic Carbon (SOC) in range of 0.1% -0.4% Annually and improving GM profit.

How well does your soil retain water

<u>General co-benefits:</u>

- improved soil structure properties, soil biological diversity, plant nutrient availability and quality
- resilience and food security
- reduced demand for synthetic chemical inputs and costs
- reduced input costs

Water Infiltration Table: Increasing levels of soil organic carbon Source: Understanding Soil Health and Watershed Function

Hydrology - water quality co-benefits:

Improving

water

r quality

- improved water infiltration & water holding capacity, with increased rainfall efficacy
- improved drought resistance and resilience
- reduced erosion and nutrient run-off

Case Study #3: Soil Organic Carbon Project Sheep grazing (57 days, 2020)

Cost of barley crop - \$140 /ha (1 Seed type and fertiliser)

Comparative trial

Increased

MLA/Landcare funded trial - to measure \$value of multi-species cover crop (productivity & soil carbon)

- With the inclusion of soil carbon, the gross margin (p.a.) resulting from a multi-species cover crop (grazing lambs) is 3 times the control (single species cereal) and an even greater margin over tired minimal species pastures.

- This approach (Trial B) is the fastest means of building soil carbon in an extremely profitable production model.

COVER CROP GROSS MARGIN CALCU				
Developed by Regenerative Autralian Farmers Pty Ltd	d, 2021			
PARAMETERS	TRIAL A (control)	Trial B (new1)		
Area (ha)	6	6		
Rainfall	260	260		
Paddock name (or ID)	Barley	Multi-species		
Photo point (take 2 weekly)				
Brix reading (sugar levels)				
Penetrometer (depth to achieve 300psi)	Attached	Attached		
VSA (refer Shepherd's book)				
A. Cover Crop details (per ha)	expand for detail			
sub-total				
B. Stock Production details	expand for detail			
sub-total				
C. Commercial value (per ha)				
Est. live weight value at start of period (\$/kg)	93	119		
Live weight value at end of period (\$/kg)	123	177		
Dressed price (\$/kg)	7	7		
Additional Revenue (\$/head)	29.4	58.1		
Gross Revenue (\$/ha)	1117.2	2207.8		
Estab. Costs (\$/ha)	262.5	305.5		
sub-total				
Gross Margin (\$/ha)	\$ 854.70	\$ 1,902.30		
With Soil Carbon value (2021 @\$30/tCO2e)	\$0	\$576.00		
Total	\$ 854.70	\$ 2,478,30		

Impact Soil Nutrients

Cover Crop Plant	C:N	Focus
Ideal microbial diet	24:1	Soil repair
Cereal rye*	80:1	High biomass
Annual vetch	11:1	Excellent stock feed; fixes large amount of N, releases soil phosphorus, beneficial insects (flowers)
Daikon (tillage raddish)*	19:1	Biological subsoil aeration
Clover	21:1	
Forage brassica*	12:1	High protein, very digestible, helps control weeds
Annual ryegrass	20:1	
- *helps chemically control weed	s, shading	& competition

Sin	gle species crop (A)	Multi-species crop (B)
	Carbon – 15%	Carbon + 21% +36% swing
•	Total Nitrogen -21%	 Total Nitrogen +16%
•	Phosphorus (Colwell)+ 62%	Phosphorus (Colwell)+ 125%
•	Calcium – 3%	Calcium +13%
•	Magnesium – 8%	Magnesium + 3%

Benefits of Carbon Farming Systems

Improvement in:

- Animal health
- Insect control
- Soil structure
- Nutrient cycling
- Less synthetic fertiliser & chemicals
- Water infiltration
- Soil Carbon > Soil ecosystem
- \$ Productivity/income

Regenerative farming is about doing what's right in each environment

Case Study #4: Soil Organic Carbon Project

Wimmera Mallee Rainfall ~300mm Farming System: Cropping/Sheep

2017 - Worst paddock 2022 – Almost best paddock

Soil Organic Carbon Change in 5 yrs

SOIL CARE	BON ANAL	YSIS REP	PORT					
						2017 (T0)	2022 (T1)	
SAMPLE ID for two carbon	Moisture**	Gravimetric water content **	Air Dry Mass **	Oven Dry Equivalent Mass **	Gravel Content **	Total Organic Carbon	Total Organic Carbon	
project areas (CEA1, CEA2)		(g water/g						
	(%)	mass)	(g)	(g)	(g)	(% C)	(% C)	
		Carbon Fan	ming initiative - Measur	rement of Soll Car	bon Sequestration in Agric	ultural Systems 2018	3	
T1-CEA1- A-L1	9.29	0.013	1 6 2 4	1 603	35	0.616	0.82	
T1-CEA1- A-L2	18.82	0.031	3,772	3,657	0.3	0.157	0.40	
T1-CEA1-B-L1	11.59	0.016	1,641	1,615	4.6	0.910	1.01	
T1-CEA1-B-L2	17.49	0.029	3,888	3,780	0.2	0.236	0.07	
T1-CEA1-C-L1	12.22	0.014	1,677	1,654	0.2	0.545	0.84	
TI-CEAT-C-LZ	19.13	0.033	3,047	3,530	01.8	0.175	0.30	CHANGE (over 5
					CEA1	2017	2022	vears)
					AVE UL (0-30cm)	0.691	0.891	22%
					AVE DL (30-100cm)	0.19	0.37	49%
T1-CEA2- A-L1	16.12	0.025	1,540	1,503	0.7	0.453	0.79	
T1-CEA2- A-L2	19.83	0.039	3,266	3,142	0.1	0.136	0.33	
T1-CEA2-B-L1	15.63	0.026	1,528	1,489	1.3	0.586	0.75	
T1-CEA2-B-L2	17.83	0.031	3,495	3,390	8.3	0.123	0.32	
T1-CEA2- C-L2	15.18	0.021	3,624	3,548	2.5	0.152	0.29	
					CEA2	2017	2022	CHANGE (over 5 years)
					AVE UL (0-30cm)	0.521	0.739	42%
					AVE DL (30-100cm)	0.137	0.313	128%

Wimmera Mallee Rainfall 300mm Cropping/Sheep

2017 – Worst paddock 2022 – Almost best paddock

Average TOC increase of 16tCO2e/ha/year

\$100k+

Earning carbon credits

PROMOTING HEALTHY SOILS

Figure 1: Climate Solutions Fund project lifecycle

Paid for carbon

Soil carbon project lifecycle and actions

Carbon Neutral – what and why?

What is does Carbon Neutral mean?

"Climate Active Carbon Neutral Standard for Organisations (Organisations Standard) is a voluntary standard to manage greenhouse gas emissions and achieve carbon neutrality. ... It provides best-practice guidance on how to measure, reduce and report emissions data for the operations of organisations and their products".

What does it mean to be carbon neutral.

What are the benefits of being carbon neutral?

- Future proof your organization
- Meet community expectations
- Stand out from competitors (brand), point of difference
- Enter the carbon neutral supply chain
- Save energy and reduce costs
- Develop carbon management expertise

Wrap Up

- Agriculture is key to both human and planetary health (i.e. the top 150mm skin of planet Earth)
- Adoption of <u>regenerative agriculture principles</u> can offer significant benefits to the way we relate to the planet, feed ourselves and our bank balance
- <u>Soil carbon is the peak indicator of soil health and ultimately human health</u>
- Markets are developing which pay farmers for building carbon in soils & tools now exist to facilitate this (refer next speaker), coupled with biodiversity credits
- Many different approaches for carbon farming depending on the farm enterprise and its vision
- <u>Communities and regions can work together (landholders, local government, businesses, consumers)</u>
- Your LandCare's commitment and support provides a great starting point

MAGIC - "the soil carbon gift horse is alive and well; you get paid for soil carbon but you get to keep it"